17 research outputs found

    A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades

    Get PDF
    With increasing turbine size, monitoring of blades becomes increasingly im-portant, in order to prevent catastrophic damages and unnecessary mainte-nance, minimize the downtime and labor cost and improving the safety is-sues and reliability. The present work provides a review and classification of various structural health monitoring (SHM) methods as strain measurement utilizing optical fiber sensors and Fiber Bragg Gratings (FBG’s), active/ pas-sive acoustic emission method, vibration‒based method, thermal imaging method and ultrasonic methods, based on the recent investigations and prom-ising novel techniques. Since accuracy, comprehensiveness and cost-effectiveness are the fundamental parameters in selecting the SHM method, a systematically summarized investigation encompassing methods capabilities/ limitations and sensors types, is needed. Furthermore, the damages which are included in the present work are fiber breakage, matrix cracking, delamina-tion, fiber debonding, crack opening at leading/ trailing edge and ice accre-tion. Taking into account the types of the sensors relevant to different SHM methods, the advantages/ capabilities and disadvantages/ limitations of repre-sented methods are nominated and analyzed

    Experimental Testing of Single APM Spheres

    Get PDF
    Advanced pore morphology (APM) foam, consisting of sphere-like metallic foam elements, proves to have advantageous mechanical properties and unique application adjustability. Since the APM foam manufacturing procedure has been developed recently, the mechanical characterization of these materials is still very limited. Therefore, the purpose of this research was to determine the behaviour of APM spheres and its composites when subjected to quasi-static and dynamic compressive loading. The results of the performed research have shown valuable mechanical properties of the composite APM foam structures, offering new possibilities for their use in general engineering applications

    Reinforced and Prestressed Concrete Using HPFRCC Matrices

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84685/1/naaman_HPFRCC2_96.pd
    corecore